“哟,爷,怎么了这是?”
程澧一个箭步冲过去,扶住跳脚乱蹦的丁二。
怎么了?早说王文素这个名字耳熟,一直没想起来,原来是写《算学宝鉴》的这位呀!丁寿记忆里前世看过一篇文章,便是介绍《算学宝鉴》的。
和现代人想的古人不重视数学不同,数学早就是周礼“六艺”之一,古代数学更是文明璀璨,成就颇多,《易经》、《河图》、《洛书》、《山海经》、《周髀算经》等先秦着作今人也无法完全理解。
先秦时的《周髀算经》中,有关于如何计算地球到太阳距离以及计算地球周长的方法和记录,记载了勾股定理,抽象的说明了直角三角形的直角边平方和等于斜边平方和,而且还给出了完整的证明过程,比之古希腊的毕达哥拉斯要早数百年,其他至于二进制、十进制、球坐标系、射影几何、割圆术、地动学等知识均有记述,而所谓的日耳曼人,当时还在原始森林里光着屁股打猎玩呢。
犬戎攻灭西周,大量典籍损失,只有残篇碎语,经春秋战国西汉等数代整理,才得面世,在东汉初年出现的《九章算术》,主要是应用数学,教大家如何计算土地的面积等等,同时也对勾股定理作了进一步的发展。
魏晋时期的数学家刘徽为《九章算术》作注,把《九章算术》里面的算法进行抽象化总结,建立了一套从概念到定理的系统化的数学理论,这是中国数学思想史上的一次大飞跃。
南朝祖冲之在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,直到16世纪,这一纪录才被阿拉伯数学家阿尔·卡西才打破。可人家祖冲之不仅是算了个圆周率,他的《缀术》理论十分深奥,计算相当精密,对立体几何和三次方程求解正根的问题进行了深入的研究。这些都是chu在当时世界最领先地位的数学研究。
隋唐虽把祖冲之的《缀术》列入官方数学教材,但“祖冲之所着之书,名为缀术。学官莫能究其深奥,故废而不理。”
《缀术》最后失传了。
一直过了六百年,到了南宋后期,中国的数学研究才又达到了一个新的高峰。以秦九韶和元初朱世杰为代表的数学家,提出了多元高次方程组的建立和求解方法,研究了高阶等差级数的计算,证明了射影定理和弦幂定理等等。崖山之后,高峰再断。
现代许多学者认为明代是古代数学的沉寂和倒退期,例如前代的增乘开方和天元术在明代失传等等理由,而打脸他们的便是民国期间重被发现的《算学宝鉴》,书中研究了一元高次方程的数值解法,内容详实可贵,这充分说明一元高次方程数值解法及天元术、四元术在明朝并未完全失传。
王文素在解法中所用名词术语、演算程序,基本上与宋元数学一致,并有所发展和创新,其解高次方程的方法较英国的霍纳、意大利的鲁非尼早200多年。在解代数方程上,他走在牛顿、拉夫森的前面140多年。对于17世纪微积分创立时期出现的导数,王文素在16世纪已率先发现并使用。